
ScanBot: Autonomous Reconstruction via Deep Reinforcement Learning

HEZHI CAO∗ and XI XIA∗, University of Science and Technology of China, China

GUAN WU, University of Science and Technology of China, China

RUIZHEN HU†, Shenzhen University, China

LIGANG LIU, University of Science and Technology of China, China

CCS Concepts: • Computing methodologies; • Shape analysis;

Additional KeyWords and Phrases: Indoor scene reconstruction, autonomous

reconstruction, hierarchical reinforcement learning, auxiliary learning tasks

ACM Reference Format:

Hezhi Cao, Xi Xia, Guan Wu, Ruizhen Hu, and Ligang Liu. 2018. ScanBot:

Autonomous Reconstruction via Deep Reinforcement Learning. ACM Trans.

Graph. 37, 4, Article 111 (August 2018), 4 pages. https://doi.org/XXXXXXX.

XXXXXXX

1 METHOD DETAILS

1.1 Basic components

Algorithm. Starting from the initial location ?A , the robot tries

to explore and scan the unknown environment with quality recon-

struction S. Then, a ROI with insu�cient exploration or incomplete

objects is generated by the global scanning policy Π
(6) after taking

in the 2D quality mapM built from S. The ROI is �rst represented

by a goal point 0 (6) , accessed through the path P generated by

D* lite and ends up to be ?A , where the robot actually arrived. All

unscanned objects in the designated ROI are progressively selected

with group of : and completed by scanning the viewpoint 0 (; )

dedicated by the masked local policy Π
(; ) . The local policy takes

the current voxelized ROI region VA and selected objects V> as

input to generate the viewpoint for completion until it is content

with the reconstruction and chooses STOP action, or no feasible

candidate viewpoints left. The robot iterates the above steps until

the whole scene has been completely explored and scanned. The

entire autoscanning process is shown in Algorithm 1, where BD and

BB denotes unscanned objects bank in designated ROI and global

scanned objects bank, respectively.

∗Both authors contributed equally to this research.
†Corresponding author: Ruizhen Hu (ruizhen.hu@gmail.com)

Authors’ addresses: Hezhi Cao; Xi Xia, University of Science and Technology of China,
Hefei, Anhui, China; Guan Wu, University of Science and Technology of China, Hefei,
China; Ruizhen Hu, Shenzhen University, Shenzhen, China; Ligang Liu, University of
Science and Technology of China, Hefei, China.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.
0730-0301/2018/8-ART111 $15.00
https://doi.org/XXXXXXX.XXXXXXX

ALGORITHM 1: DRL-based autoscanning for scene reconstruction

Input: Initial pose of the robot ?A

Output: Reconstructed scene S

S ← InitiallyScan(?A ) ;

BB = ∅;

repeat /* Global scanning loop */

M ← ConstructQualityMap(S) ;

0 (6) ← Π
(6) (M) ;

P ← PlanPath(0 (6) ) ;

?A ← FollowPath(P) ;

S ← ScanAlongPath(P) ;

BD ← ObtainUnscannedObjectsInROI(S, ?A , BB );

repeat /* Local scanning loop */

idx← SelectObjects(BD , :);

BD , BB ← UpdateObjectsBank(idx) ;

V> ,VA ← ConstructVoxelGrid(S, idx) ;

repeat /* Object scanning loop */

0 (; ) ← Π
(; ) (V> ,VA ) ;

S ← ScanNBV(0 (; ) ) ;

BD ← RecordNewObjectsInROI(S);

V> ,VA ← UpdateVoxelGrid(S) ;

until No viewpoint left or 0 (; ) = STOP ;

until BD == ∅;

until Time runs out;

Semantic SLAM framework. After the robot enters an unknown

indoor environment, it begins acquiring a stream of raw RGB-D

images on the �y as input, which are processed by an underlying se-

mantic dense reconstruction SLAM framework with frame-to-frame

tracking, segmentation, and fusion operations [Runz et al. 2018].

The SLAM framework estimates camera pose at current step and up-

dates the current scene reconstructionS with newly acquired points

and instance labels in real-time. Note that the MaskRCNN module

to obtain semantic labels is pretrained on the MS-COCO dataset

and �ne-tuned by the samples collected from Gibson and MP3D,

considering the discrepancy between the classes in MS-COCO and

our used datasets. Apart from semantic masks from the MaskRCNN

module, geometric boundaries produced by the geometric segmen-

tation are also incorporated to acquire a more accurate instance

segmentation of objects. After obtaining the labeled points, the ro-

bot maintains an object-centric dense map S = {B: = (x: , ;: )}:
with each 3D point associated with space position x: and instance

label ;: . Moreover, we would like to highlight that how to obtain

accurate camera poses is not the focus of our proposed method but

the SLAMmodule. Our method aims at planning the path of scanner

to complete the partial objects based on current reconstruction ( .

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2018.

HTTPS://ORCID.ORG/0000-0003-4760-0743
HTTPS://ORCID.ORG/0000-0002-3396-9243
HTTPS://ORCID.ORG/0009-0009-6495-1845
HTTPS://ORCID.ORG/0000-0002-6798-0336
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0003-4760-0743
https://orcid.org/0000-0002-3396-9243
https://orcid.org/0009-0009-6495-1845
https://orcid.org/0000-0002-6798-0336
https://doi.org/XXXXXXX.XXXXXXX


111:2 • Hezhi Cao, Xi Xia, Guan Wu, Ruizhen Hu, and Ligang Liu

The DRL framework. We utilize the Decentralized Distributed

Proximal Policy Optimization (DD-PPO) [Wijmans et al. 2019],

which belongs to the actor-critic structure, as our main DRL frame-

work. In an actor-critic based approach, an actor and a critic module

are updated iteratively. Given the current environment state BC , the

actor serves as a stochastic policy c (0C |BC ) and is trained to output

either the mean ` (BC ) and standard deviation f (BC ) of a Gaussian dis-

tribution for continuous actions or the probability of each discrete

action. At the same time, the critic is trained to predict the future

cumulative discounted reward + (BC ) (i.e. state-value function) and

can be used to estimate the relative advantage of an action via Gener-

alized Advantage Estimation (GAE) [Schulman et al. 2015]. DD-PPO

scales the original PPO method very well in distributed and decen-

tralized settings and is suitable for training in resource-intensive

simulations such as photorealistic 3D environments.

1.2 2D quality map

The construction of exploration, obstacle, and semantic channels in

2D quality map is detailed as follows:

Exploration channel. The exploration channel is used to re�ect

where the agent has visited. Speci�cally, without removing the �oor

plane, current acquired 3D point cloud S is directly projected to

form a 0-1 grid (i.e. elements of value 0 denote unseen region and

value 1 denote explored locations).

Obstacle channel. The obstacle channel is constructed by counting

all remaining 3D points belonging to each grid cell and normalized

by a non-linear transformation 2;8? ((2/2max)
2, 0, 1), where 2max is a

threshold considered as fully non-traversable. Hence, the values in

this channel are appropriate approximations of the degree to which

the robot cannot safely pass through these cells.

Semantic channels. We select �B functional object categories to

represent the semantic channels of the global map without over-

whelming the agent with negligible semantic signals (please refer

to Section 2 for selected categories). Any remained classes are ab-

sorbed into an "Others" channel, including objects on the table or

ornaments. Each element in these channels simply represents the

occupancy of the corresponding category.

Trajectory channel. The trajectory channel memorizes the agent’s

positions of the last =traj steps with a linearly decaying scheme to

establish a time-varying trajectory.

1.3 O�-Policy Correction

The fact that zeroing out the probabilities of infeasible actions turns

the local policy learning into an o�-policy update. In other words,

the agent now behaves according to the masked policy cmask (0 |B)

(i.e., behavioral policy) but the PPO algorithm uses the collection

of rollouts to update the original unmasked policy c (; ) (0 |B) (i.e.,

target policy). This distribution inconsistency breaks the hypothesis

of the policy gradient method to which the PPO belongs and can

lead to instability of training, and hence must be �xed. To be more

speci�c, we incorporate the V-trace algorithm [Espeholt et al. 2018]

(a1) (b1) (c1)

(a2) (b2) (c2) (d)

Fig. 1. An example of the o�-policy correction. At each step, the agent

can choose one action from V1-V4 (a1). The V4 is infeasible due to the

obstruction from the wall. The agent then sequentially selects V1, V2, and

V3 with the newly reconstructed voxels highlighted in di�erent colors (a1-

c1). For each step, The action probabilities before and a�er applying the

feasibility mask are juxtaposed in (a2)-(c2). In (d), we show the original

and importance weighted action advantages to illuminate the fact that the

actual advantages may be much lower due to the increased frequencies of

unmasked actions.

to replace the GAE-based [Schulman et al. 2015] return

EC = + (BC ) +

=−1∑

;=0

(W_);X+
C+;

(1)

with importance weighted one

EC = + (BC ) +

=−1∑

;=0

(W_); (

;−1∏

8=0

2C+8 )X̂
+
C+;

(2)

where X+C = AC + W+ (BC+1) −+ (BC ) is the TD error for + and X̂+C =

dCX
+
C is the weighted TD error with dC =<8=(d̄,

c (; ) (0C |BC )

cmask (0C |BC )
), and

28 =<8=(2̄,
c (; ) (08 |B8 )

cmask (08 |B8 )
) is another truncated importance sampling

weights (Figure 1). In plain words, 28 and dC reduce the importance

of the rewards obtained by initially less frequent actions since some

infeasible actions have been removed (
c (; ) (08 |B8 )

cmask (08 |B8 )
≤ 1). By the same

token, we also replace policy gradient ratio AC =

c (; ) (0C |BC )

c
(; )

old
(0C |BC )

with

c (; ) (0C |BC )

cmask
old
(0C |BC )

to correct the policy gradient estimation. The reader is

encouraged to refer to [Espeholt et al. 2018] for more details.

2 EXPERIMENT DETAILS

Habitat tasks. The global exploratory scanning task is devised to

train our global scanning policy, where the agent is randomly placed

in a room and asked to completely explore and scan the simulated

3D environment with depth and semantic sensors. For this task,

we only keep our 2D quality map as the agent’s internal spatial

representation and integrate single-frame point clouds directly into

it. This simpli�cation can reduce memory consumption (by not

keeping the whole 3D reconstruction result) when training, yet

generalize well in our experiments.

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2018.



ScanBot: Autonomous Reconstruction via Deep Reinforcement Learning • 111:3

On the contrary, the local object reconstruction task mimics the

scenario when the agent enters the ROI and tries to sense it. To this

end, we randomly generate a pair of start and end points for each

episode. The end point is constrained to be within a small radius

around an object, while the start point is not. At the start of each

episode, the agent is steered to the end point from the start point

and begins scanning the selected objects in detail with the initially

acquired point cloud. Unlike the global task, we keep a full-blown

3D reconstructed point cloud in the local one to provide accurate

voxel grids to the agent.

Parameter setting. When constructing a 2D qualitymap, we evenly

divide 2c into �@ = 8 intervals, hence yielding 8 quality-related

channels, and compute quality score with 3best = 1.5 and 3max = 3.0.

In addition, we choose a set of �B = 10 functional object categories

to form the semantic channels: chair, table, cabinet, sofa, bed, sink,

stairs, bathtub, counter, and others (including all unlisted categories).

The resolution of the map is 52< for each cell and total " = 720

cells, yielding an e�ective spatial coverage of 36< × 36<. The local

egocentric map of size 12<×12< is cropped to build the �nal seman-

tic map of size 240 × 240 × 42. When computing NBV, we construct

voxel grids with ! = 64 for selected objects and !′ = 128 for environ-

ment points in 5< × 5< × 2.5< cubic area surrounding the selected

objects. The reward coe�cients areF4 = 0.05,F@ = 0.1,FB = −0.01

(with linear scheduling from 0 to -0.01 as the training proceeds),

andF6 = −0.01 for global policy andFE = 0.005,FB = −0.05, and

F3 = −0.03 for local policy. Another set of hyperparameters bal-

ancing the losses is set to Ucritic = 0.5, Uentropy = 0.01, UPCP = 0.1,

USPR = 0.1 and Umask = 0.5, respectively.

Implementation details. To train the system, we deploy our frame-

work on a Cloud Server equipped with an Intel Xeon Platinum 8163

CPU (2.50GHz×96), 756GB RAM, and 8 Nvidia Tesla V100 GPUs

each with 32GB RAM. We use the o�-the-shelf episodes from the

Habitat PointNav challenge for our global task, which specify the

simulation scene, start position and orientation of this episode. For

the local task, we generate about 2.5M episodes for network training

and 2000 episodes for testing. The training takes about 5 days for

global policy and 2 days for local policy on this machine, respec-

tively. In the early stage of the training, the global policy �rst uses a

heuristic local policy that selects the �ve nearest views for scanning

when reaching the ROI. The local policy then replaces this heuristic

policy after being successfully trained. When conducting the exper-

iments, we ran the online semantic reconstruction with the three

trained networks on a desktop with an AMD Ryzen 9 5950X CPU

(3.4GHz×16), 64GB RAM, and an Nvidia GeForce RTX 3090 GPU

with 24GB RAM.

3 ADDITIONAL ABLATION STUDIES

No exploration or quality reward. In our global scanning module,

we carefully devise two dedicated reward terms to juggle scanning

quality improvement with scene exploration to accomplish su�cient

coverage with high-quality reconstruction. To evaluate the necessity

of both of them, an experiment is conducted to train twomore agents,

each of which only receives one reward term as its positive stimulus

(the other two negative terms keep the same).

0

0.2

0.4

0.6

0.8

1

Small Medium Large Extra large

W/O Qual

W/O Exp

Full

2D
 M

ap
 C

o
m

p
le

te
n

es
s

0

0.2

0.4

0.6

0.8

1

Small Medium Large Extra large

W/O Qual

W/O Exp

Full

3D
 O

b
je

ct
 Q

u
al

it
y

Fig. 2. Ablation study on the e�ect of exploration and quality terms of the

reward on the performance of scene exploration and object reconstruction

quality. Two more agents are trained with only exploration (Exp-only) or

quality (�al-only) terms for this experiment.

Table 1. Ablation study on the e�ect of semantic trimming on the perfor-

mance of 3D scene completeness and 3D object quality.

Split
SC OQ

Trim-sem Full-sem Trim-sem Full-sem

Small 0.935 0.936 0.759 0.760

Medium 0.887 0.889 0.711 0.714

Large 0.665 0.663 0.642 0.642

Extra large 0.502 0.505 0.444 0.446

Table 2. Average inference time and memory usage of di�erent modules in

our method.

Component SLAM framework Global policy Local policy

Time (ms) 167 12 10

As shown in Figure 2, the exploration-only agent spends most

of its time loa�ng around and fails to acquire reconstruction with

satisfactory quality. On the contrary, the quality-only agent exhibits

a shortsighted strategy, which omits to cover enough space and

objects in large environments.

No semantic trimming. In all experiments, we only preserve chan-

nels of the most prominent object categories in the 2D quality map

and represent all excluded objects by others channel. The basic as-

sumption is that the unobtrusive objects have little in�uence when

predicting the scene layout and may induce extra computational

costs. To verify our assumption, we compare the results of the

trimmed semantic (Trim-sem) and full semantic (Full-sem) settings.

As demonstrated in Table 1, the trimmed semantic setting shares

similar performance with the full semantic but takes about 50% less

time to train.

4 RUNTIME ANALYSIS

For runtime analysis of our system, we evaluate the inference time

per frame of major components of our method on the desktop set-

ting. Processing each frame includes a Habitat simulation with an

average speed of 20 ms, an updating of the SLAM framework, and

an inference of global policy or local policy since our method al-

ternates between global ROI planning and local NBV planning. As

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:4 • Hezhi Cao, Xi Xia, Guan Wu, Ruizhen Hu, and Ligang Liu

shown in Table 2, the largest computational bottleneck and time-

consuming operation is the SLAM framework, and both global and

local policies are lightweight thanks to the elaborated 2D-3D rep-

resentation and neat policy network. Moreover, a more advanced

SLAM module can be adopted to improve the already acceptable

real-time performance.

REFERENCES
Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward,

Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. 2018. Impala: Scal-
able distributed deep-rl with importance weighted actor-learner architectures. In

International Conference on Machine Learning. PMLR, 1407–1416.
Martin Runz, Maud Bu�er, and Lourdes Agapito. 2018. Maskfusion: Real-time recogni-

tion, tracking and reconstruction of multiple moving objects. In 2018 IEEE Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 10–20.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
2015. High-dimensional continuous control using generalized advantage estimation.
arXiv preprint arXiv:1506.02438 (2015).

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh,
Manolis Savva, and Dhruv Batra. 2019. Dd-ppo: Learning near-perfect pointgoal
navigators from 2.5 billion frames. arXiv preprint arXiv:1911.00357 (2019).

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2018.


	1 Method details
	1.1 Basic components
	1.2 2D quality map
	1.3 Off-Policy Correction

	2 Experiment details
	3 Additional Ablation Studies
	4 Runtime analysis
	References

