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Fig. 1. Top: When entering an unknown environment, our proposed ScanBot (circled in orange, le� figure) relies on a global policy and a local policy to

alternatively generate the region-of-interest (ROI, denoted as a red flag with the red circle) and a series of next-best-views (NBVs, denoted as black Kinect

sensors) to automatically reconstruct the scene with object semantics (in di�erent colors, right figure). Bo�om: We demonstrate one iteration of the global

and local scanning procedures and show their navigation paths using red (global) and blue (local) do�ed lines, respectively. ScanBot first selects an ROI by

the global policy (a), and then navigates to the goal position (b) to select a sequence of NBVs nearby guided by the local policy (c). When the local detailed

reconstruction is finished following the planned NBVs, ScanBot enters the next iteration by selecting a new ROI (d).

Autoscanning of an unknown environment is the key to many AR/VR and

robotic applications. However, autonomous reconstruction with both high

e�ciency and quality remains a challenging problem. In this work, we

propose a reconstruction-oriented autoscanning approach, called ScanBot,

which utilizes hierarchical deep reinforcement learning techniques for global

region-of-interest (ROI) planning to improve the scanning e�ciency and local

next-best-view (NBV) planning to enhance the reconstruction quality. Given

the partially reconstructed scene, the global policy designates an ROI with
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insu�cient exploration or reconstruction. The local policy is then applied

to re�ne the reconstruction quality of objects in this region by planning and

scanning a series of NBVs. A novel mixed 2D-3D representation is designed

for these policies, where a 2D quality map with tailored quality channels

encoding the scanning progress is consumed by the global policy, and a

coarse-to-�ne 3D volumetric representation that embodies both local envi-

ronment and object completeness is fed to the local policy. These two policies

iterate until the whole scene has been completely explored and scanned.

To speed up the learning of complex environmental dynamics and enhance

the agent’s memory for spatial-temporal inference, we further introduce

two novel auxiliary learning tasks to guide the training of our global policy.

Thorough evaluations and comparisons are carried out to show the feasi-

bility of our proposed approach and its advantages over previous methods.

Code and data are available at https://github.com/HezhiCao/Scanbot.

CCS Concepts: • Computing methodologies; • Shape analysis;

Additional KeyWords and Phrases: Indoor scene reconstruction, autonomous

reconstruction, hierarchical reinforcement learning, auxiliary learning tasks

ACM Reference Format:

Hezhi Cao, Xi Xia, Guan Wu, Ruizhen Hu, and Ligang Liu. 2018. ScanBot:

Autonomous Reconstruction via Deep Reinforcement Learning. ACM Trans.

Graph. 37, 4, Article 111 (August 2018), 16 pages. https://doi.org/XXXXXXX.

XXXXXXX

ACM Trans. Graph., Vol. 37, No. 4, Article 111. Publication date: August 2018.

HTTPS://ORCID.ORG/0000-0003-4760-0743
HTTPS://ORCID.ORG/0000-0002-3396-9243
HTTPS://ORCID.ORG/0009-0009-6495-1845
HTTPS://ORCID.ORG/0000-0002-6798-0336
https://orcid.org/0000-0003-4760-0743
https://orcid.org/0000-0002-3396-9243
https://orcid.org/0009-0009-6495-1845
https://orcid.org/0000-0002-6798-0336
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


111:2 • Hezhi Cao, Xi Xia, Guan Wu, Ruizhen Hu, and Ligang Liu

1 INTRODUCTION

With the rapid progress of ubiquitous RGBD depth sensors, au-

tonomous 3D scanning (i.e., autoscanning) of indoor scenes by mo-

bile robots equipped with these sensors has attracted growing atten-

tion in both computer graphics and robotics communities [Charrow

et al. 2015; Xu et al. 2017]. Due to di�erent applications, they usually

emphasize di�erent aspects of the scanning process. For example,

when the goal is to navigate to some speci�c positions or objects,

quick exploration is the key, and there is always no need to re-

construct the whole scene with �ne details. In contrast, if the goal

is to build a realistic digital copy of the entire scene, without a

pre-determined purpose, then both exploration coverage and recon-

struction quality become essential. In this work, we focus on later,

i.e., autonomous reconstruction of an unknown environment.

Previous works on autonomous reconstruction [Charrow et al.

2015; Liu et al. 2018; Xu et al. 2017; Zheng et al. 2019] usually adopt

a hierarchical strategy with global path planning to explore the

unknown area and local view planning to control the delicate cam-

era movements for the careful reconstruction of discovered objects,

which leads to high reconstruction quality. However, the underly-

ing scanning strategy in either global path planning or local view

planning is usually hand-crafted and rule-based, which decouples

the semantic information extraction and the scanning decision-

making. This decoupling makes it harder for the agent to leverage

common patterns of indoor scenes, limiting its generality to di�er-

ent environments and robustness to the error in state estimations.

Meanwhile, recent works on exploration or navigation-oriented

autoscanning [Chaplot et al. 2021, 2020b,a] utilize learning-based

methods to improve exploration e�ciency and �exibility by inte-

grating feature extraction and decision-making modules. However,

they focus more on exploration and navigation without the detailed

view planning driven by the completeness of objects, which usu-

ally results in poor reconstruction quality. Our goal is to study the

possibility of using more advanced learning-based techniques to

con�ate the exploration e�ciency and scanning quality together

for the autonomous reconstruction of an unknown environment.

Based on the key observation that autonomous reconstruction,

by its nature, is a sequential decision-making process, which consists

of two integrated levels of sequential planning [Liu et al. 2018], we

propose a novel autonomous reconstruction system, called ScanBot,

which employs a hierarchical deep reinforcement learning (DRL)

framework to combine the superiority of learning-based exploration

methods and detailed view planning to achieve both high e�ciency

and high quality. Speci�cally, a global scanning policy is proposed

�rst to plan a region-of-interest (ROI) with insu�cient exploration or

multiple incomplete objects for further investment. Then the agent

travels to the planned ROI by an analytic path�nder and utilizes

the local policy to improve the reconstruction quality. The local

policy plans and scans along a sequence of next-best-views (NBVs) of

incomplete objects in the corresponding region. Once local scanning

in the planned ROI is completed, the global policy designates a

new ROI for further improvement. These two plannings iteratively

alternate until the whole scene has been completely explored and

scanned.

Di�erent from works on exploration or navigation-oriented au-

toscanning [Chaplot et al. 2021, 2020b,a], where usually a 2D occu-

pancy grid with/without semantics is enough as the observation, the

completeness of objects cared in the reconstruction task can hardly

be derived from their representations. On the other hand, although

pure 3D representation is ideal for indicating the completeness of

objects, using such a heavy representation is infeasible in practice

considering the expensive computational cost of DRL. To overcome

the above challenges, we introduce a mixed 2D-3D representation

to provide suitable information needed for each step, where a 2D

quality map is utilized in global policy, and a detailed 3D voxel rep-

resentation is adopted by the local policy for delicate camera control.

Our key insight is that a well-designed 2D representation that en-

codes the reconstruction quality is su�cient to provide an overall

structure for the global policy to decide the next target region, while

delicate camera control using local policy for high-quality scanning

only needs 3D representation on a smaller scale. By using this hy-

brid representation, our global-to-local hierarchical framework can

be implemented with reasonable computing resources and achieve

e�cient, complete, and accurate scene reconstruction.

To further alleviate the sample ine�ciency of DRL, we propose

two dedicated auxiliary learning tasks to guide the training of the

global policy by providing additional complementary objectives. By

accessing the designated goal point by a path planning method, the

global policy can be released from low-level decision-making, but

it also makes the agent unconscious of the path it will go through.

To improve the path representation and the learning of the environ-

ment’s dynamics, we propose a Path Complexity Prediction (PCP)

task to help the agent sense the complexity of the path and produce

a reachable goal point. Moreover, to enhance the information main-

tained in agent memory, a Scanning Progress Recollection (SPR) task

is designed to memorize the scanned objects during the previous

action where the quality reward comes from.

To the best of our knowledge, this work is the �rst DRL-based

approach to automatically accomplish the exploration and recon-

struction of large-scale indoor environments concurrently in one

navigation pass. Our method successfully learns to strategically

switch between exploration-oriented and reconstruction-oriented

goals and �lter out infeasible viewpoints given the current partial

observations. The overall system, as well as individual components,

are veri�ed through extensive experiments to show the feasibility

of the proposed approach and the superiority of our method over

previous methods. To summarize, our main contributions include:

• An autoscanning system for high-quality scene reconstruc-

tion based on hierarchical DRL techniques with a global pol-

icy for ROI planning and a local policy for sequential NBV

planning.

• A mixed 2D-3D representation of current perceived scene

structures, where novel quality channels are added to a 2D

quality map to provide reconstruction-aware information for

ROI planning and detailed 3D volumetric representations are

used for NBV planning.

• Two new auxiliary learning tasks designed for the global

policy, i.e., Path Complexity Prediction (PCP) and Scanning

Progress Recollection (SPR), to accelerate the training process

and promote understanding of spatial and temporal relations.
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Fig. 2. Overview of our DRL-based autoscanning system with global exploratory scanning module and local NBV scanning module. A 2D quality map is

constructed from current scene reconstruction and taken as the input to the global policy to generate a ROI to guide the exploration of regions that need finer

reconstruction, where the training of the global policy is accelerated by adding two auxiliary tasks. The local policy then progressively selects and scans

objects within the ROI by determining a sequence of NBVs. Once all seen objects are reconstructed, the whole process enters the next iteration.

2 RELATED WORK

2.1 Autonomous 3D reconstruction

The maturity of both online RGB-D reconstruction [Dai et al. 2017;

Newcombe et al. 2011; Nießner et al. 2013; Whelan et al. 2016] and

mobile robots advances the advent of autonomous reconstruction

systems [Charrow et al. 2015; Krainin et al. 2011; Xu et al. 2017]. In

early attempts, research e�ort has been devoted to automatically

scanning individual objects with �ne-grained geometric details by

scrupulously choosing a next-best-scan [Krainin et al. 2011; Kriegel

et al. 2012; Wu et al. 2014]. A small region with several objects has

also been tackled by either physical interactions [Xu et al. 2015]

or 3D attention-based object recognition [Xu et al. 2016]. One step

further, [Charrow et al. 2015; Xu et al. 2017] propose to construct

dense 3D maps of the entire scene driven by the uncertainty that is

commonly computed from mutual information or tensor �eld. To

improve the speed of scene reconstruction, a multi-robot system can

be deployed and driven by dynamic task assignment using Optimal

Mass Transport optimization [Dong et al. 2019].

Regardless of the signi�cant progress being made, only in recent

years have the semantic cues from single objects been used in on-

line scene reconstruction. Liu et al. [2018] �rst conceive the idea

of an objectness-driven autoscanning scheme enabling exploration,

reconstruction, and object extraction of an unknown scene in one

navigation pass. Besides, Zheng et al. [2019] use voxel-based se-

mantic labeling to generate a viewing score �eld as an alternative

way for online semantic reconstruction. Distinctly, we develop a

novel autonomous reconstruction approach to merge the semantic

information extraction with the scanning action decisions, making

it easier for the robot to leverage learnable patterns in common

indoor scenes as its high-level semantic priors.

2.2 Autonomous exploration and navigation

Automatically exploring and navigating in an unknown environ-

ment has been a long-standing research topic in robotics [Gasparetto

et al. 2015; Yamauchi 1997]. Most existing methods rely on the fron-

tiers of an occupancy map to determine a global goal for broad-

ening the boundary of the explored region [Bourgault et al. 2002;

Stachniss et al. 2005; Umari and Mukhopadhyay 2017]. However,

frontier-based methods are usually stacked at corners or small areas

behind furniture [Chaplot et al. 2020b]. Instead of using frontiers

directly, [Chaplot et al. 2020c] introduces graph nodes as landmarks

and conducts navigation by selecting nodes toward the target via

supervised learning.

To e�ectively leverage structural regularities of real-world envi-

ronments, prior works on autonomous navigation-oriented explo-

ration use a DRL policy together with an explicit world map that

is either directly learned from �rst-person images [Chaplot et al.

2020b; Gupta et al. 2017] or constructed by 3D projection [Chap-

lot et al. 2020a; Chen et al. 2019]. However, the absence of object

completeness in these maps makes the agent unconscious of the

reconstruction progress, which may lead to the oversight of the area

that has been explored but is still occupied with incomplete objects.

Recently, a 3D semantic map is introduced in [Chaplot et al. 2021]

to actively gather observations and re�ne a pretrained instance seg-

mentation network using spatio-temporal consistency of semantic

labels, but this representation cannot scale to large scenes since the

computation and memory costs cubically grow with the scene size.

2.3 Deep reinforcement learning

Reinforcement learning is a powerful framework for dealing with

the sequential decision problem, generally formulated as theMarkov

decision process (MDP). Bolstered by deep neural networks, it has

unleashed its potential for solving a wide range of real-world tasks

such as games [Hessel et al. 2018; Silver et al. 2018] and robot control

[Akkaya et al. 2019; Gu et al. 2017; Peng et al. 2018b].

The usage of DRL also extends to computer graphics. Peng et

al. [2018a] adopt a combined objective of motion-imitation and

user-speci�ed tasks to learn highly dynamic skills for character

animation. Other endeavors have been made to train a DRL agent

to generate move plans for scene arrangement based on Monte

Carlo tree search [Wang et al. 2020]. Hu et al. [2020] introduce

a transport-and-pack problem and solve it with an RL-based box

selection strategy interleaved with a heuristic-based box packing.

Hierarchical RL is a popular strategy to split long-horizon tasks

by incorporating temporal abstraction [Sutton et al. 1999]. In the

most common situation, the high-level policy directs the low-level

policy through subgoals (speci�c states that the agent should reach)

either in the original state space [Li et al. 2020; Nachum et al. 2019]
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or in an embedding space [Jain et al. 2019; Vezhnevets et al. 2017]. To

automatically �nd such abstraction, Bacon et al. [2017] propose an

option-critic architecture that learns both the internal policies and

their termination conditions, together with the policy over them.

In this work, we gain the power of hierarchical RL by decoupling

end-to-end learning across di�erent spatial scales with both global

and local policies tailed for our autonomous reconstruction task.

Note that the goal point generated by the global policy in previous

works [Chaplot et al. 2021, 2020b,a] mainly indicates the general

direction toward the target point or object to guide the local plan-

ning, and thus the agent usually does not need to actually arrive

at such a goal point. In contrast, the goal point generated by our

global policy represents the ROI aiming for either exploration or

reconstruction, and the agent needs to arrive at that point �rst and

then start making local decisions based on the current observation.

Besides, their local policy is used to generate low-level actions with

the goal of promoting exploration e�ciency while navigating to

the global point. However, we directly go to the global goal point

following a simple path�nder but focus more on the ROI goal point

selection and local path planning inside the ROI region, aiming

to get a more complete reconstruction while exploring the scene.

Therefore, although adopting a similar hierarchical structure, both

the global and local policies are carefully designed to better serve

our task with quite di�erent operating mechanisms compared with

the previous method.

2.4 Auxiliary learning tasks

Using auxiliary learning tasks in DRL is a well-proven technique

[Jaderberg et al. 2016; Mirowski et al. 2016; Ye et al. 2021] to im-

prove sample e�ciency or even �nal performance on the actual task.

Supervised auxiliary tasks may prepare additional labeled data for

the agent to endow it with preferred abilities, e.g., depth prediction

[Mirowski et al. 2016] or object key points prediction [Matas et al.

2018]. Alternatively, self-supervised auxiliary tasks collect inputs

and surrogate annotations from the agent’s own experience, such as

next-step feature [Pathak et al. 2017], temporal distance to episode

termination [Kartal et al. 2019], and immediate rewards [Jaderberg

et al. 2016]. In our work, we concentrate on self-supervised tasks

to not restrict the application of our method only in simulation or

annotation-rich environments. The proposed auxiliary tasks also

integrate intimately with the specifying of distant goals and scan-

ning progress representation, resulting in a fruitful speeding up of

the policy training.

3 OVERVIEW

Figure 2 shows an overview of our proposed DRL-based autoscan-

ning method for unknown scene reconstruction. Our method con-

sists of two modules: a global scanning module for ROI planning

and a local scanning module for NBV planning. An underlying se-

mantic SLAM framework is also integrated to estimate the camera

pose and reconstruct the scene on the �y. Given the current scene

reconstruction from the SLAM module, the global policy will select

a ROI for scene exploration or reconstruction based on a 2D quality

map, and then the local policy will further select a sequence of

sensor viewpoints to guide a detailed scanning of the ROI region.

The whole process iterates with the updated scene reconstruction

until the entire scene has been completely explored, understood,

and reconstructed. Note that our method focuses on higher-level

decision-making, the actual collision-free path to the selected ROI

or NBV is generated using matured path�nding algorithms like D*

lite [Koenig and Likhachev 2002].

Global scanning module. To get an overall structure of the current

scene, our method projects the integrated 3D semantic point cloud

( onto the �oor plane to get the 2D quality map, which encodes not

only the occupancy and semantic information as in [Chaplot et al.

2020a] but also the reconstruction quality and surface completeness

information tailored for the autonomous reconstruction task. The

global policy then takes this 2D quality map as input and outputs

a 2D goal position specifying the subsequent ROI to guide the ex-

ploration of unknown or incomplete areas. To further accelerate

the training process of the global policy, two dedicated auxiliary

learning tasks (PCP and SPR) are used to promote the understanding

of environmental dynamics and relations between robot movement

and the scanning progress. More details about the global scanning

module are given in Section 4.

Local scanning module. After the robot reaches the ROI, our

method starts planning a sequence of NBVs to reconstruct the lo-

cal region using 3D volumetric representation of both objects and

environment from the current instance segmented point cloud. A

set of candidate viewpoints is �rst selected for each object. Then

by inspecting the completeness of each object and the feasibility

of corresponding viewpoints through a multi-branch encoder, an

appropriate scanning viewpoint (indicated by the red circle) is dic-

tated by our learning-based local NBV policy after �ltering out

the unsuitable ones due to the blocking of the wall or obstruction

caused by other furniture. This view selection operation repeats

to gradually increase the reconstruction quality of objects within

this region until all seen objects are scanned. More details about the

local scanning module are provided in Section 5.

4 GLOBAL SCANNING MODULE

4.1 Global policy

2D quality map. To alleviate the inevitable information loss when

projecting a 3D scene onto the image plane, we specially design a

2D quality map for the global scanning module to preserve as many

reconstruction-related clues as possible. The 2D quality map MC is

represented by a multi-channel 2D image with resolution"×" and

� channels and each cell belongs to [0, 1], where� = �4+�B+�@ with

�4 corresponding to three commonly used exploration, obstacle,

and trajectory channels to represent the explored, occupied area,

and past robot positions, �B indicating the number of semantic

channels with useful object categories and their spatial distribution

information [Chaplot et al. 2020a], and �@ referring to the new

quality channels we designed to encode how well each region has

been reconstructed.

Based on the key observation that the 3D scanner should be placed

within a �xed range of scanning distances and scanning angles to

obtain a more satisfying reconstruction result, we discretize the
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high

low

Fig. 3. Examples of two quality channels corresponding to di�erent sensor

directions, where the object points scanned with the distance closer to the

predefined best scanning distance gets higher quality score.

scanning direction into �@ ranges {q: }
�@

:=1
and calculate the scan-

ning quality within each range to constitute �@ quality channels.

For channel : , the quality score @ of each object point is de�ned as

follows:

@ =

{

(3max − |3 − 3best |)/3max 8 5 dA> ∈ q:

0 >Cℎ4AF8B4
(1)

where 3best and 3max are the best and maximum valid range of

the 3D scanner, respectively, 3 is the distance between the object

point and the scanner, and dA> is the direction of the vector from

the scanner to the object point. Intuitively, these quality channels

indicate along which direction and how far each object point is

scanned by the robot. Figure 3 visualizes two exemplar quality

channels corresponding to two scanning direction ranges.

Network architecture. Given the robot’s current estimated po-

sition ?AC , we adopt a coarse-to-�ne strategy to apply two other

transformations to MC to get more localized information around

?AC . An egocentric map of size "′ × "′ × � is �rst cropped from

the original top-down map based on ?AC , and then a max-pooling

operation is performed on the original allocentric raw map to get

the same "′ ×"′ ×� sized map. By stacking these two maps to-

gether, the observation >C ∈ [0, 1]"
′×" ′×2� between the current

state contains localized and holistic eyesight of the environment.

This observation together with the current position ?AC and previous

goal position 0
(6)
C−1 form the triplet input {>C , ?

A
C , 0

(6)
C−1} to the global

policy. By taking ?AC as input, the misalignment of the egocentric

map and holistic map can be eliminated. The actor will then output

the mean ` (BC ) and standard deviation f (BC ) of a Gaussian distri-

bution to control the selection probability of points on the map,

Goal embedding

Pose embedding

CNN

���
��−�(�)

��
GRU

Layer

ℎ�−�

ℎ�

Actor

Critic �(��)

�(��)
�(��) ��(�)

Analytic 

pathfinder

Fig. 4. The architecture of our global policy. The network takes the current

observation >C , current robot position ?
A
C , and previous goal position 0

(6)
C−1 as

inputs. Processed by a series of embedding, convolutional, and GRU layers,

a Gaussian distribution is outpu�ed by the actor to guide the sampling of

next goal position 0
(6)
C , the path to which is dynamically planned using the

analytic pathfinder.

and the subsequent ROI designated by a 2D point 0
(6)
C is randomly

sampled according to the probability map.

Figure 4 shows the network architecture of our global policy.

The actor and critic share the same encoder for extracting common

features useful to both of them. In our implementation, >C is encoded

by a convolutional neural network (CNN) and then concatenated

with the other two inputs processed by separate embedding layers.

In addition, to make the agent aware of the current progress and

thus avoid repetitive e�ort, we add an extra gated recurrent unit

(GRU) layer to augment the network with memory, i.e., the hidden

state ℎC of the GRU at time step C .

With the subsequent ROI available, D* lite [Koenig and Likhachev

2002] algorithm is used to guide the robot to navigate to the speci�ed

goal while subjecting to the collision avoidance constraint. Note

that D* lite is capable of fast replanning by making full use of the

previous search result to generate a dynamic path when the goal

position is pointed at an unexplored region and some unexpected

obstacles are encountered.

4.2 Reward function

To train our global policy, we de�ne the reward function as the

combination of the following terms:

' (6)
= F@ ∗& +F4 ∗ � +F6 ∗� +FB ∗ ( (2)

where & is the scanning quality, � is the exploration coverage, � is

the goal reachability, and ( is the execution slackness. The �rst two

reward terms encourage the agent to explore the unknown area and

reconstruct incomplete objects as much as possible, and the other

two reward terms serve as penalties for unsatisfactory scanning

strategies. Visual explanations of these terms are shown in Figure 5.

Scanning quality term. The scanning quality & is de�ned as the

increase of total scores of all quality channels:

& =

∑

0≤8, 9<",:∈�&

<
8 9:
C+1 −<

8 9:
C (3)

where<
8 9:
C =<0G (<

8 9:
C−1, @

9;:
C ) is themaximumquality score recorded

in position 8, 9 of the :-th channel, and �& is the index set of quality
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(a) Scanning quality (b) Exploration coverage

(c) Goal reachability (d) Execution slackness

Fig. 5. Global policy reward terms. In each subfigure, the robot starts from

the blue point to the red circle (goal position) and eventually arrives at

the green point, with the traveling path illustrated by the do�ed line. (a)

Scanning quality term guides the robot to improve the reconstruction quality

of those incomplete chairs, with the top two subfigures demonstrating the

change of quality map before and a�er scanning.(b) Exploration coverage

term encourages the robot to explore the unknown area, and the green area

indicates the newly explored region a�er traveling to the goal point. (c)

Goal reachability term prefers reachable goal positions by adding a penalty

based on the distance 3goal between the goal position and the final arrived

position. (d) Execution slackness term is a linear penalty proportional to

the number of primitive movements that the agent takes to encourage an

e�icient trajectory.

channels. Intuitively, this reward term encourages the robot to scan

an incomplete object from all directions, and thus it can be an indi-

cator of the reconstruction progress and guide the robot to �nish

its ultimate goal — high-quality reconstruction.

Exploration coverage term. The exploration coverage � measures

the increase of the total area in the map that is known to be free to

traverse or occupied by an obstacle. We simply accumulate all the

values in the exploration channel of the 2D quality map and then

calculate the di�erence between two time steps:

� =

∑

0≤8, 9<",:=��

<
8 9:
C+1 −<

8 9:
C (4)

where �� is the index of the exploration channel.

Goal reachability term. As a collaborative design of our goal-

driven global policy, we introduce the goal reachability� = ∥P−1
C −

0
(6)
C ∥2 to measure the Euclidean distance between the location that

the robot arrived at and the speci�ed target, where P−1
C is the last

path waypoint that the agent has arrived at time step C . With the

help of this regularization, the agent can learn to balance the trade-

o� between spotting the potentially valuable region and the waste

of scanning e�ort into a blind alley.

�� ��(�)
CNN Goal embedding

����
����� ����ℎ�

��
CNN

ℎ�+2

����

∆�(�, � + 1)���

(a) (b)

Fig. 6. Illustration of the proposed auxiliary learning tasks. (a) Path com-

plexity prediction: the robot is asked to predict how many le� turns =le�

and right turns =right it needs to navigate to the given goal point 0
(6)
C with

the assistance of the current 2D quality map >C . (b) Scanning progress

recollection: the robot needs to recollect how many object surfaces it has

scanned be�er during the previous step (highlighted in green) from the 2D

quality map >C and GRU hidden state ℎC+2.

Execution slackness term. The execution slackness ( gives −=? re-

ward for the path execution sequence {0
(? )

;
}
=?
;=1

, where 0
(? )

;
denotes

a primitive motion action such as moving forward, turning left and

right, which encourages fast scene exploration and reconstruction

in general.

4.3 Training with auxiliary learning tasks

Learning with auxiliary tasks can provide supplementary objec-

tives for the agent to improve learning e�ciency and transfer prior

knowledge into the policy. Inspired by this, we incorporate two

novel scanning-centric self-supervised tasks to boost the already

acceptable global scanning policy further. The proposed tasks help

train both quality map CNN and GRU part after it. In the following

discussion, we denote 5map as the quality map encoder, and 5goal as

the goal embedding mapping.

Path Complexity Prediction (PCP).. The incorporation of the ana-

lytic path�nding module releases the network from learning primi-

tive steps for navigation and obstacle avoidance. Nonetheless, the

actual path that the robot will follow now becomes part of the envi-

ronment’s dynamics (i.e., environmental factors that are indirectly

a�ected by the agent’s actions), which impedes the agent learning

the environment model and results in increased sample complex-

ity. To make the robot attuned to these uncontrolled dynamics, we

design an auxiliary goal-related task that can derive supervision

from the robot’s own navigation experience. As shown in Figure 6

(a), given the 2D quality map >C and the corresponding generated

goal point 0
(6)
C , the agent is asked to predict how many left and

right turns are needed when approaching it. Since the robot has

to veer frequently when there are obstacles in its way, the number

of turns is a proper and convenient estimate of the complexity of

the planned path. Such estimation can also regularize the policy to

output a more navigable target.
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Technically, we preprocess >C and 0
(6)
C with the same quality map

encoder 5map and goal embedding layer 5goal. After concatenation,

the inputs are fed through a fully-connected layer 5PCP to directly

output logits for=left and=right. We discretize the number of possible

turns into several intervals and use a cross-entropy loss with ground

truth counts collected from past experience.

!%�% = �A>BB�=C
(

5PCP

(

5map (>C ) , 5goal (0
(6)
C )

)

, =left, =right

)

(5)

Scanning Progress Recollection (SPR).. In the reconstruction-aware

2D representation, we use �@ devoted channels to encode the ac-

quisition state of each observed object. Considering that it may not

be straightforward to aggregate information in these channels, we

introduce another auxiliary learning task to help the agent master

this concept. As shown in Figure 6 (b), the agent is asked to predict

the normalized increment of scanning qualities between two time

steps, given the quality map >C and GRU hidden stateℎC+2. We adopt

ℎC+2 rather than ℎC+1 originating from that we want the agent to

remember the spots it has visited and build correspondence between

the spatial structure of the reconstruction result and the scanning

progress in consecutive steps, instead of to remember current ob-

servation (ℎC+1 takes >C+1 as input) and then calculate the quality

increase by 5(%' head.

Likewise, a fully-connected layer 5SPR is used to predict the rela-

tive increment of qualities Δ@ (C, C +1)/=
>
C , where Δ@ (C, C +1) denotes

how many cells have an increased quality while =>C denotes all seen

object cells during the execution of the actions at step C . We derive

the supervisory labels from the rollout data and use MSE as the loss

function.

!(%' =

1

2

(

5SPR
(

5map (>C ) , ℎC+2
)

,
Δ@ (C, C + 1)

=>C

)2

(6)

Loss function. During the training of global policy, we jointly op-

timize the parameters of the quality map encoder, GRU module, and

actor-critic heads, altogether \6 , and auxiliary module parameters

\0 at the same time.

! (6) (\ ) = !PPO (\6) + !aux (\0)

!PPO (\6) = !actor + Ucritic!critic − Uentropy�entropy

!aux (\0) = UPCP!PCP + USPR!SPR

(7)

where !PPO is the original loss of PPO, which is further comprised

of surrogate loss from actor (used to estimate policy gradient), re-

gression loss from critic, and entropy loss to encourage exploration

in action space, and !aux is the auxiliary task loss.

5 LOCAL SCANNING MODULE

5.1 Local policy

Scanning process. Once the robot reaches the ROI, it starts to

improve the reconstruction quality of objects within this region.

Since objects in the ROI may not be fully discovered at the current

state, it is hard to plan a optimal view path at the beginning, as new

objects might be spotted during the scanning process. Hence, we

progressively select : partially scanned objects within the region

and add newly discovered objects into the unscanned objects bank

until all objects in the bank have been scanned. These : selected

objects are identi�ed by a heuristic strategy based on distances

and object sizes, which favors objects that are larger and closer

to current robot position. Then, we uniformly sample =E points

around each object to constitute the viewpoint candidates for NBV

selection. We set : to three based on experience to avoid voracious

planning with fewer objects and also be able to design a smoother

viewpoint sequence between objects. These candidate viewpoints

form the action space together with a STOP action. Note that the

probability of candidate viewpoints of vacant objects is set to zero

by the feasibility mask when the number of selected objects is less

than : . The quality re�nement of the selected objects continues until

the robot is satis�ed with the reconstruction and selects the STOP

action or no feasible unscanned candidate viewpoint lefts. Detailed

scanning process is provided in the supplementary material.

Coarse-to-�ne 3D volumetric representation. After identifying the

objects for reconstruction, two types of voxel grids V = {V> ,VA }

are constructed as the inputs for the local scanning module. Firstly,

points belonging to the selected objects are segmented and dis-

cretized individually to obtain : voxel grids each for a single object.

We then concatenate them to form a volumetric representation

V> ∈ [0, 1]!×!×!×: . The vacant objects will be occupied with one

when the number of remaining objects is less than : . Secondly, en-

vironment points encompassing these objects are also extracted as

a larger voxel gridVA ∈ [0, 1]!
′×!′×!′ . These two representations

are prepared for the DRL branch to select NBVs for completing

the objects and for the feasibility predictor to �lter out infeasible

viewpoints, respectively. Our insight is that evaluating both the

pro�t and the feasibility of a viewpoint is intractable for a single

network. The former focuses on how many new object surfaces can

be observed from the given view and only relies on the �ne-grained

voxel grid of a single object, while the latter involves discarding

unreachable views or views that cannot look unobstructed at the

object and requires a holistic picture of the region geometry. Thus

we develop a masked local scanning policy with a DRL branch and

a feasibility predictor to achieve each objective separately, and then

collectively determine a succession of optimal scanning views.

Feasibility mask. It often occurs that the viewpoints are blocked

by the wall or unreachable when their positions are occupied by

other objects. By utilizing the feasibility predictor, the agent can

avoid futile attempts to go to the unfeasible viewpoints and make

the DRL branch stay focused on improving reconstruction quality.

Besides, since the feasibility predictor shares the feature extractor of

the objects with the DRL branch, it can further serve as an auxiliary

learning task to accelerate the training with strong supervisory

signals. The feasibility predictor takes bothV>
C andVA

C as its inputs

and outputs a probability map over all candidate viewpoints. Note

that the probability of viewpoints of vacant objects is set to zero

directly. The NBV action is then sampled by �rst conducting an

element-wise product of the feasibility mask and output of the actor

and re-normalizing the probabilities for all actions.

Network architecture. Figure 7 presents the overall structure of the

proposed local policy. At time step C , the inputs of the DRL branch

are denoted as {V>
[C−2:C ]

, {?E8 }
=E

8=1, 0
(; )

[C−3:C−1]
} , where {?E8 }

=E

8=1 rep-

resents the relative positions of these candidate viewpoints to the
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Fig. 7. The architecture of our local policy. When : objects are determined,

both the stacked object V>
[C−2:C ]

and the surrounding region VA
C are vox-

elized. The DRL part (actor head) and feasibility predictor predict two

probability maps over all candidate viewpoints and collectively decide the

final probabilities for sampling the NBV action 0
(; )
C .

agent’s current location.WhileV>
[C−2:C ]

represents the stacked voxel

grids of objects in three consecutive steps providing a form of short-

term memory. Likewise, already chosen viewpoints of the past three

steps 0
(; )

[C−3:C−1]
are stacked and included as well. Compared to the

global module, the local scanning episode typically ends after 7

to 9 actions (on average, 2 to 3 views for every single object with

: = 3). There is not much gain in using GRU in such a short-horizon

scenario but incurs much higher learning di�culty. Thus, we stick

to this stacked design in our following experiments.

5.2 Reward function and network training

When it comes to local policy training, we include three terms in

its reward function:

' (; )
= FE ∗+ +F3 ∗ � +FB ∗ ( (8)

where + is the reconstruction coverage, ( is similar as before, the

viewpoint slackness, and � is the moving distance.

Reconstruction coverage term. In local NBV scanning, the primary

goal is to reconstruct the objects as completely as possible. So we

only include a single positive reward+ that is de�ned as the growth

in occupied voxels for all visible objects.

+ =

∑

0≤8, 9,;<!,0≤><:

E
8 9;,>
C+1 − E

8 9;,>
C (9)

where E
8 9;,>
C is the 0-1 value in the corresponding spatial position

and object of V>
C .

Viewpoint slackness and moving distance terms. With the same

purpose as in the global module, we also add the viewpoint slack-

ness reward ( to prevent the agent from being sluggish. Moreover,

another negative reward is introduced to spur smooth view trajecto-

ries by punishing the agent for moving back and forth. That is, we

de�ne moving distance reward as the Euclidean distance between

two consecutive NBVs � = ∥0
(; )
C+1 − 0

(; )
C ∥2.

Network training. One of the essential components of the local

scanning module is the feasibility mask predictor. To train it, we

simply resort to the simulator oracle to tell us whether a given

viewpoint is navigable and whether an observation containing the

selected object can be obtained. These ground truth labels are used

to train the feasibility mask predictor as a multi-label classi�cation

task. When training the local DRL network, we use the ground truth

feasibility mask to modify the output probabilities of the actions

and only deploy the predictor at test time.

The �nal loss of the local policy can be concluded as follows,

with \> and \A representing the parameters of object and region

encoders, respectively, and \; and \< represent the parameters of

local policy and mask predictor’s heads.

! (; ) (\ ) = !PPO (\> , \; ) + Umask!mask (\> , \A , \<) (10)

where !mask is the cross-entropy loss.

6 RESULTS AND EVALUATION

6.1 Experiment setup

Simulation system. We develop our system based on the Habi-

tat platform [Savva et al. 2019], a high-performance 3D simulator

wrapped within an extendable high-level API. It ships with con�g-

urable sensors (e.g., RGB, depth, semantic) and several prede�ned

tasks (e.g., navigation, instruction following, question answering)

for training and benchmarking embodied AI algorithms. Because of

the novelty of our setup, there is no existing task and corresponding

con�guration for the autoscanning agent. We thereupon develop

two new tasks (i.e., global exploratory scanning and local object

reconstruction) into the Habitat and conduct both training and eval-

uation based on them. Note that the ground truth camera poses

and instance label of objects from this simulated environment is

replaced by the estimations from the SLAM module at evaluation

phase and the end of training phase for �ne-tuning.

Dataset. Our experiments are carried out on Gibson [Xia et al.

2018] and Matterport3D (MP3D) [Chang et al. 2017] datasets, con-

sisting of a diverse set of 3D reconstructed real-world building-scale

scenes. The consequent collection contains a total of 111 scenes (90

MP3D and 21 Gibson), which are further divided into 78 scenes (61

MP3D and 17 Gibson) for the training set and 33 scenes (29 MP3D

and 4 Gibson) for the test set. These houses have an average indoor

area of 275.2<2 and 22.3 regions, some of which have exterior struc-

tures such as balconies, gardens, fences, etc. Under our problem

assumption, there is a unique ground plane for the target scene.

Accordingly, we regenerate all navmeshes that de�ne which area

the agent can pass through to inhibit the agent from accidentally

climbing up the stairs. Apart from this, all scenes are left unchanged

even if there still exist detrimental factors for training, such as data

missing or uneven ground.

As the di�culty of accomplishing e�ective exploration and re-

construction generally increases with the number of rooms and

accessible areas, we split our test set into four parts according to

the navigable area of the scene: small (9 scenes with 17-97 <2),
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Small Medium Large Extra large

34.7�2

31.1�2

148.0�2

153.0�2 309.4�2

391.5�2 476.4�2

405.5�2

Fig. 8. Visual results of simulated scanning in di�erent splits of the test set.

medium (10 scenes with 100-224<2), large (8 scenes with 264-391

<2) and extra large (6 scenes with 405-1371<2), to fully re�ect the

performance of the proposed agent.

6.2 �alitative results

Figure 8 shows a gallery of visual results of the proposed approach

for simulated scanning. We pick two scenes from each split of our

test set to demonstrate the scalability of our method. For each scene,

we show a birds-eye view of the reconstructed scene, recognized

objects in di�erent colors, and the �nal path traveled by the agent.

With the proposed system, di�erent types of indoor scenes with real-

world complexity can be completely and e�ciently reconstructed

and understood in a fully automatic manner, thanks to the awareness

and utilization of the global structure with the global policy as well

as the e�ective view selections with the local policy.

Figure 9 illustrates two typical infeasible viewpoints masked out

by our feasibility prediction. Since the objects are mainly placed

near the wall or other objects, it is pretty common that these objects

have one or more viewpoints blocked by the wall or occupied by

other objects. By utilizing the feasibility predictor, the agent can

avoid futile attempts to go to the unfeasible viewpoints and make

the DRL branch stay focused on improving reconstruction quality.

Figure 10 demonstrates some emergent scanning strategies learned

by the proposed global policy. During the scanning, the global pol-

icy selectively generates either exploration-oriented goals (Figure

10(a)) or reconstruction-oriented goals (Figure 10(b)). Compared

to frontier-based exploration methods, our method can predict the

layout of the unknown regions, therefore, yielding more e�cient

goal positions and expanding the explored boundary rapidly. On the

other hand, by specifying goals near incomplete objects, the global

policy can cooperate with the local policy to e�ectively increase the

object reconstruction quality.

(a) (b)

Fig. 9. Typical infeasible viewpoints masked out by our feasibility prediction.

The infeasible viewpoints are colored in red while the feasible ones are

colored in blue. For each example, we show the 3D volumetric representation

on the bo�om and the corresponding 2D top-down view on the top to see

the viewpoint distribution more clearly. (a) Viewpoint that is reachable but

invisible due to the blocking of the wall. (b) Viewpoints that are visible to

the object but inaccessible as their positions are occupied by two sofas.

Statistics. In Table 1, we report the assorted statistics of our

method and the scene splits. The results are measured and averaged

over all the test scenes within each split. The majority of the time is

spent on robot navigation and is roughly proportional to the scale

and complexity of the scene accordingly. The number of planned

ROIs is recorded when the scene reconstruction rate exceeds a given
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(a) Exploration-oriented goals (b) Reconstruction-oriented goals

high

low

Fig. 10. Example goal points (red circles) generated by our global policy. For each example, the input quality map with blue dot for start point and red line for

navigation path is shown on the top, and the one obtained a�er the ScanBot (cyan/yellow camera icons) arrives the ROI is shown on the bo�om. (a) Two

exploration-oriented goals that help explore unknown area and expand the boundary e�iciently. (b) Two reconstruction-oriented goals that help increase the

reconstruction quality of discovered objects.

Table 1. Statistics of our method on various test set splits. For each split, we

report the navigable area and number of regions per floor, number of ROIs

designated by the global policy, number of NBVs selected by the local policy,

total time to finish the scanning, and total travel distance of the agent.

Scene Area Region ROI NBV Time Distance

Small 35.2<2 7.8 8.4 60.1 1.4<8= 13.6<

Medium 66.2<2 8.3 16.0 100.8 3.3<8= 31.4<

Large 199.5<2 14.9 39.7 226.3 7.7<8= 81.4<

Extra large 271.9<2 11.9 47.8 271.6 9.8<8= 99.9<

threshold or a maximum is reached. Therefore, it is also proportional

to the scene complexity.

6.3 Evaluation metrics

The arrangement of the performance evaluations mainly considers

three vital aspects of autonomous scene reconstruction: 1) How

many unseen regions have been successfully explored? 2) How well

have the contained objects been reconstructed? 3) How e�cient is

our method? To quantitatively evaluate these aspects, we adopt the

following metrics:

• 2D map completeness. The 2D map completeness [Chaplot et al.

2020b] is commonly used to measure the percentage of ground truth

map that the robot has explored.

"� =

1

|Γ |

∑

2∈Γ

Xexplore (2) (11)

where Γ is the set of free cells in the ground truth map and Xexplore
is a Dirac delta function indicating whether the agent has explored

the cell 2 .

• 3D scene completeness. The scene completeness is designed to

assess the �nal 3D reconstruction coverage of the entire scene. We

follow [Dong et al. 2019] to compute an asymmetry distance to

account for the completeness of the reconstruction result:

(� =

1
∑

�(B1)

∑

B1∈S∗

�(B1) min
B2∈S

∥B1 − B2∥
0

2
(12)

where�(·) measures the area of a vertex and S∗ denotes the ground

truth scene surface. The ;0
2
norm ∥x∥0

2
is used to di�erentiate be-

tween inliers and outliers via the parameter n :

∥x∥0
2
=

{

0 8 5 ∥x∥2 < n

1 >Cℎ4AF8B4
(13)

• 3D object completeness.We adopt the metrics from Object-Aware

Scanning Benchmark (OASC) [Liu et al. 2018] to evaluate the object

acquisition after autonomous scanning. The object completeness is

computed as:

$� =

1

|V∗ |

∑

E∈V∗

Xdetect (E) · Xvalid (E) (14)

whereV∗ represents visible voxels of all objects of the ground truth

reconstruction. Xdetect and Xvalid are used to di�erentiate voxels that

both belong to the detected objects (by a pretrained Mask-RCNN)

and have been scanned within a valid sensory range.

• 3D object quality. Similar to object completeness, the object

quality [Liu et al. 2018] is measured with an extra quality score:

$& =

1

|V∗ |

∑

E∈V∗

Xdetect (E) · Xvalid (E) · @(E)

@(E) = 4
−

k2 (nE,d2E )

[2kC · 4
−

(3 (E,2 )−3best )
2

[23max

(15)

where k (nE, d2E) is the angle between the normal at voxel E and

the viewing the vector from camera 2 to E and 3 (E, 2) is the distance

between the voxel and camera.
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Fig. 11. Comparison on 2D map completeness and 3D scene completeness

with all baselines. Di�erent circle sizes denote di�erent splits of the test set,

i.e., bigger circle indicates larger scene.

• Traveled distance. To quantify the scanning e�ciency, we use

the movement distance of the robot in an episode as a measure.

• Running time. The running time is recorded with the robot’s

speed set to 0.25m/s.

6.4 Comparison to state-of-the-art methods

Baseline methods. To quantitatively evaluate the performance,

we compare our method with both state-of-the-art rule-based au-

tonomous reconstruction methods and learning-based exploration

methods using the metrics de�ned in Section 6.3. The �rst work [Xu

et al. 2017], referred to as TF, is a geometry-based algorithm that

drives an autonomous reconstruction by time-varying tensor �elds.

The second work [Liu et al. 2018], called NBO, is a representative

method that makes use of object-level semantics and can achieve ex-

ploration, reconstruction, and object recognition in one navigation

pass. To verify the e�ect of our reconstruction-oriented designs, we

also involve a learning-based exploration approach [Chaplot et al.

2020b], referred to as Active Neural SLAM (ANS), which uses similar

DRL techniques but aims for a di�erent goal. For a fair comparison,

we provide ground-truth camera poses during training for accelera-

tion and use estimations during testing for all the above methods.

One thing to note here is that both TF and NBO are reconstruction-

orientated methods like ours, thus we all use the SLAM module to

get the estimated camera pose, while ANS is exploration-orientation

with its own pose estimation module.

Comparison on scene exploration and reconstruction. In Figure 11,

we compare against those three baselines in terms of average 2D

map completeness and 3D scene completeness on four splits of

test sets. As we can see, all four approaches achieve good 2D map

completeness in scenes of small sizes, but the performance of the

learning-based methods (ANS and ScanBot) drops much slower than

the other two when the environments become larger and harder to

explore e�ciently. Despite the slightly poor performance compared

to ANS when purely considering the 2D map completeness, ScanBot

performs signi�cantly better than ANS with regard to 3D scene com-

pleteness, thanks to the additional scanning progress information

Fig. 12. Comparisons on 3D scene completeness rate with respect to the

number of moving steps on four representative scenes with all baselines.

Fig. 13. Comparisons on 3D object completeness and 3D object quality with

all baselines.

encoded in quality channels and the quality reward that advocates

proactively object completion.

The average 3D scene completeness of our method is consistently

better than baseline methods over all splits. We ascribe this to an

essential and valid balance attained by our approach between e�-

cient exploration and high-quality object reconstruction. Figure 12

demonstrates the 3D scene completeness rate over the traveled dis-

tance for four representative scenes from di�erent splits. To reduce

the bias introduced by the robot’s placements, we collect the results

from all available episodes and visualize the mean (solid line) and

standard deviation (transparent overlay). The plots further validate

that our method can reconstruct di�erent types of scenes faster and

result in a fuller reconstruction than other approaches.

Comparison on object reconstruction. To remove the disparities

in the exploratory abilities of di�erent methods, we choose ten

scenes (S1-S10) from small and medium splits to report the result of
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Table 2. Performance of di�erent methods on scanning e�iciency measured

by traveled distance (in meters) and running time (in minutes) in represen-

tative scenes.

Scene
Traveled distance Running time

TF NBO ANS ScanBot TF NBO ANS ScanBot

S1 16.5 19.4 15.8 14.4 2.0 10.2 1.7 1.3

S2 12.8 18.5 15.1 12.4 1.1 11.9 1.4 1.2

S3 14.6 22.1 17.2 15.2 2.0 12.8 1.8 1.4

S4 17.6 21.1 18.3 15.9 1.8 18.8 1.9 1.5

S5 13.8 16.2 12.3 10.4 1.2 14.7 0.9 1.0

S6 34.4 53.6 39.3 35.8 3.5 23.4 3.6 3.3

S7 24.1 34.0 25.8 21.3 3.0 16.9 2.7 2.3

S8 24.6 26.4 20.0 16.3 2.7 13.8 2.3 1.6

S9 38.8 57.1 47.1 40.8 4.1 28.4 4.9 3.9

S10 34.6 47.4 38.9 32.4 3.3 23.9 3.5 2.9

object reconstruction. It is easy to see in Figure 13 that our object-

aware scanning leads to complete and high-quality reconstruction

of objects innately. An alternative NBV algorithm is involved in

the NBO approach to realize a similar object-centric reconstruction,

however, it depends on a synthetic 3D model database to provide

the necessary prior knowledge for shape recognition and alignment.

In contrast, we use the learning-based methods to directly recognize

objects and learn shape priors from raw scanned data and hence

achieve robust and accurate reconstruction results in complex and

cluttered environments.

Comparison on scanning e�ciency. By making the most of high-

level semantic clues, we posit that the agent can achieve a thoughtful

and e�cient scanning plan of the overall environment. To substan-

tiate this idea, we measure the time consumption of the system

for achieving �xed scene reconstruction and 2D map completeness

rates (0.7 for scene reconstruction and 0.6 for 2D map completeness)

and total traveled distance of the robot, respectively, in S1-S10. In

Table 2, we report the comparisons of the running time and the

movement distance of the robot between our method and three

baseline methods. Most of the time, our method can achieve faster

and more e�cient scanning even compared to the object-agnostic

approaches (TF and ANS). The object feature extraction and match-

ing component severely slow down the speed of the NBO, but our

method is immune to these due to the fast network inference when

testing.

6.5 Ablation Studies

In this section, we perform ablation studies to evaluate the contri-

bution and e�ectiveness of individual components of our method.

The importance of quality channels for global policy. In our global

scanning module, we monitor the scanning process by the quality

channels of the map. To evaluate the e�ectiveness of this qual-

ity map, we compare the performance of agents trained with and

without quality channels. The results are veri�ed with 2D map com-

pleteness and 3D object quality, as shown in Figure 14. The omits of

quality channels will not a�ect the 2D map completeness since the

exploration mainly relies on the contour and structure of the scene,

Fig. 14. Ablation study on the e�ect of quality channels on the performance

of 2D map completeness and 3D object quality. Two agents are trained

with all quality channels or without quality channels for this experiment.

Di�erent circle sizes denotes di�erent size of test set, i.e., bigger circle

indicates larger scene.

Fig. 15. Impact of goal reachability on 3D scene completeness and replan-

ning time tested on two variants: with and without goal reachability reward

term.

which can be derived from the occupancy and semantic channels.

However, the 3D object quality signi�cantly drops as the agent is

unconscious of the scanning progress and hard to �gure out the

incomplete objects. This situation exacerbates the growing scene

size, leading to the reduced chances of scanning objects.

The importance of reachability reward for global policy. The reach-

ability reward term� of the global policy is introduced to implicitly

remove or restrict the unreachable goals in the decision space. To

determine its e�cacy, we retrain the global policy without � , and

compare their performance on 3D scene completeness and a supple-

mentary metric replanning times as demonstrated in Figure 15. The

variant without reachability reward cannot reach the similar per-

formance obtained by the original method when the environment

scale becomes large, in which case an inaccessible goal wastes the

robot’s energy on �nding the way to it. For replanning times, we

count how many times the path planning module has to regenerate

the navigation path due to unexpected obstacles. In reality, an au-

toscanning robot prefers smooth paths for the ease of both robot

control and frame-to-frame registration. Therefore, our method that

needs relatively less path replanning is safer and more suitable for

practical usage.

The importance of auxiliary tasks for global policy. In the follow-

ing, we aim to examine the e�ciency of individual auxiliary tasks
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Fig. 16. Learning curves of variants of auxiliary tasks aggregated from three

random seeds.

Fig. 17. E�ectiveness of learning-based local policy comparing to rule-based

method [Liu et al. 2018]. Our learning-based method needs less travel

distance to complete the reconstruction of objects within the room, and

the di�erence becomes more clear with the increase of number of objects

within the test room.

and their combination. We construct four variants including: only

trained with RL reward (W/O PCP & SPR), with RL reward and PCP

task (W/O SPR), with RL reward and SPR task (W/O PCP), and with

all objectives (Full). Each variant is given a �xed budget of 20M

frames with three random seeds as its training resource (by a frame,

we mean that one global scanning action is �nished in the simu-

lation environment), with the hope that a dominant method will

achieve a better result when training is completed or achieve the

same result faster. To evaluate them, we measure the average scene

reconstruction rate on the test set every 0.5M during training and

plot the resultant statistics in Figure 16. With the learning curves,

we additionally compute the area under them (AuC) together with

the best reconstruction rate to re�ect the actual disparity.

Both the PCP and SPR tasks boost the training of our global policy.

However, these improvements are not quite complementary when

we add them together. The multi-task variant loses its performance

at the early stage and only catches up after 6M frames. Our hy-

pothesis is that the multi-task training manner interferes with the

learning of the primary scanning task. It takes time for the agent to

be conditioned on other tasks and �nally bene�t from them.

Fig. 18. E�ectiveness of the feasibility mask predictor. Finished by taking

a similar number of actions in an episode, the local policy with feasibility

prediction selects more feasible viewpoints compared to the se�ing without

the predictor, which proves that the feasibility predictor highly increases

the scanning e�iciency.

The importance of learning-based local policy. The local policy

takes shape priors and relationships between objects into consid-

eration for NBV selection rather than relying on the information

gain-based strategy. Besides, the agent is also asked to smooth the

viewpoint sequence to minimize its movement distance through two

negative reward terms. These all contribute signi�cantly to an e�-

cient view selection strategy that helps increase the reconstruction

of objects faster, especially in complicated environments. Figure 17

shows the measurement of reconstructed object voxels per meter

compared with the NBOmethod [Liu et al. 2018]. Note that the NBO

needs an object shape dataset as a prior to justify the completeness

of the object and decide the next NBV while this is not required by

our method. We performed this experiment by randomly selecting

50 rooms from our test set and using our learning-based as well

as NBO’s rule-based local policies to control the agent to scan ob-

jects within the given room. From these results, we can see that our

method needs less travel distance to �nish the reconstruction of the

objects within the room, whereas the performance of the NBO satu-

rates in small rooms with fewer objects. When more objects exist,

the proposed local policy successfully leverages the spatial relation-

ships among multiple objects to reduce the redundant movements

of the robot.

The importance of feasibility prediction for local policy. Since the

objects are often placed near the wall or other objects, the feasibility

mask predictor is an essential ingredient of the local scanning mod-

ule to facilitate an e�ective training of the DRL policy. This idea is

con�rmed by a comparison of the 2D map completeness between

the full method and a variant without the feasibility predictor shown

in Figure 18. This alternative version is trained using only the voxel

grid of the region as input and is guided by the same reward. As ob-

served from the results, the performance of this variant is disrupted

when there exist more infeasible viewpoints around the objects. We

also observed obvious instability when training it, which con�rms

the di�culty for a single network to learn object reconstruction and

view feasibility jointly.

6.6 Domain Generalization

Dataset adaption. There are marked variations in the data distri-

bution between Gibson andMP3D datasets. To name a few examples,
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Fig. 19. Example results of directly adapting our method for real-world scene reconstruction with blue dots for start points, red circled points for planned ROI,

and red lines representing navigation paths.

Table 3. Performance of dataset adaption measured by 2D map complete-

ness (MC), 3D scene completeness (SC), and 3D object completeness (OC).

Agent
Small Medium

MC SC OC MC SC OC

Mixed 0.933 0.926 0.842 0.874 0.879 0.766

MP3D-only 0.872 0.903 0.836 0.865 0.834 0.748

Table 4. Performance of scale adaption measured by 3D scene completeness

(SC), and 3D object quality (OQ).

Method Agent
Large Extra Large

SC SQ SC SQ

ScanBot
All 0.665 0.642 0.502 0.444

Small&Medium 0.603 0.598 0.446 0.403

NBO All 0.512 0.539 0.453 0.392

scenes in MP3D have some open regions where the agent cannot

sense the boundary due to the lack of data while scenes in Gibson

are almost closed and bounded; MP3D has some rare environments

(e.g., chapel, theater, museum, etc.) while Gibson has principally

residential buildings. This inconsistent distribution allows us to

investigate the domain generalization performance and scalability

of our proposed system by training all models on one domain but

evaluating them on the other. This alternative training set consists

of 72 scenes from MP3D, and the test set has exclusive access to

the 10 scenes from Gibson. We also move 6 training scenes from

Gibson into the test set for the original mixed version to maintain

a training set of the same size. Note that the test set now only has

scenes of small and medium sizes, so we only report the results of

scenes with these two scales in the following table.

From the comparison shown in Table 3, the ScanBot trained only

on theMP3D dataset exhibits robust generalized behaviors in unseen

environments from Gibson. For both scene-level and object-level

metrics, the performance only has a small gap between the agents

trained on mixed and MP3D-only datasets.

Scale adaption. Since the scale of scenes changes dramatically

from small scenes (< 100<2) to extra large scenes (> 400<2) as

illustrated in Figure 10, it is interesting to investigate the scalability

of our method by training with small and medium scenes but testing

with large and extra large scenes. In this experiment, we re-split the

collected scenes based on the size of their navigable area, resulting

in 50 training scenes (33 MP3D and 17 Gibson) with an average

area of 120.9<2 and 14 testing scenes (MP3d only) of 512.5<2. The

comparison of the results of these two models is shown in Table

4, with the performance of NBO [Liu et al. 2018] as a reference.

As the layout of objects and structures inside a room or between

adjacent rooms is similar, our global policy can still adapt strategy

based on the patterns learned from scenes of small and medium

sizes to those unseen large and extra-large scenes. Moreover, our

local policy focuses on completing objects in the ROI with a �xed

range (5< × 5< × 2.5< in our experiments), which makes the policy

quite robust to the scale of the entire scene as long as there are

similar patterns in local object distribution. We can see that both 3D

scene completeness and object quality are slightly dropped and still

better than the baseline trained with scenes from all sizes, which

proves that our method can be extended to large scene scales.

Real-world adaptation. We also test the generality of our method

to real scenarios by conducting real-world reconstruction with a

Fetch robot equipped with an Azure Kinect DK camera. The Laser

and IMU sensor data of Fetch are also incorporated to improve the

accuracy and robustness of the camera pose estimation. The recon-

struction results of three unknown indoor scenes, including one

meeting room, one co�ee shop, and one o�ce, are shown in Figure

19. The detailed reconstruction process of the co�ee shop is demon-

strated in the accompanying video. We can see that our method

obtains faithful reconstructions of those three real scenes. Although

the holes brought by the transparent and specular materials are in-

evitable due to the loss of depth data, futile attempts to reconstruct

these areas can be avoided thanks to the trajectory channel intro-

duced in the 2D quality map and the memory brought by the GRU

unit of global policy. Moreover, we �nd that the estimated camera

pose is sometimes inaccurate due to the noisy inputs from the depth

sensor, which introduces misalignment and outliers into the 2D

quality map, however, our global policy is still capable of localizing
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exploration or reconstruction-oriented ROI as the corresponding

regions in the 2D quality map are relatively stable.

7 CONCLUSIONS

We present a hierarchical DRL-based approach for autonomous

scanning, including exploration, understanding, and reconstruction

of large-scale 3D environments. At the heart of our approach is

an elaborate divide-and-conquer scheme that brings the strengths

of DRL into both global ROI planning and local NBV planning. To

save the computational cost of DRL, we propose a mixed 2D-3D

representation with di�erent spatial scales and tailored information.

On the one hand, with the help of a reconstruction-aware 2D qual-

ity map, the global exploratory scanning module spots a ROI that

deserves further exploration and scanning by high-level semantic

information and the awareness of current scanning progress. On the

other hand, by utilizing region-level and object-level 3D voxel grids,

the masked local NBV scanning module plans a series of detailed

sensor viewpoints to constantly raise the reconstruction quality of

discovered objects. Through comprehensive experiments, we prove

both the favorable features of our proposed approach when com-

pared with state-of-the-art alternatives as well as the reasonability

and practicability of the design of each component.

Limitations. As a �rst attempt at incorporating DRL into autoscan-

ning, there remain some limitations of our current solution. Our

training strategy relies on a semantically annotated scene dataset

to save the already stringent computing resources (the Mask-RCNN

semantic segmentation module is only enabled when testing). How-

ever, this constraint reduces the number of available scenes for

learning and may decrease the �nal performance as well since the

trained DRL policies are oblivious to the segmentation or recogni-

tion errors. One possible mitigation is �ne-tuning the network in

unlabeled scenes with semantics provided by Mask-RCNN. Mean-

while, the training in virtual environments also constrains our adap-

tation to real-world scenarios with similar layouts and semantics,

and constructing larger datasets with more variations of scenes

may alleviate this limitation. Moreover, the completeness of ob-

jects is roughly encoded in our 2D quality map, and it’s interesting

to investigate whether there is a more accurate but still e�cient

representation to further boost the performance. Furthermore, in

our current implementation, the 2D quality map has a �xed size of

36< × 36<, and the agent is always supposed to be located at the

center of the map at the initial step. Although this map construction

has spare space for most indoor environments, there are still cases

where the scene layout exceeds the boundary of the map, resulting

in inadequate exploration and reconstruction.

Future work. Our work demonstrates the practicability and su-

periority of the DRL-based method when building the robotic au-

toscanning system. We believe that this proof-of-concept work will

inspire future research toward both autonomous scene reconstruc-

tion and active scene understanding. First, extending our method to

other agents, such as aerial vehicles, is promising by tailoring the

SLAM algorithms for corresponding scenarios. Second, it is worth

investigating multi-�oor or dynamically sized representations for

the autonomous reconstruction agent. Integrating them with neu-

ral networks is an interesting but challenging problem and merits

further study. Third, we plan to study the incorporation of explicit

signals to drive the agent to learn meaningful semantic concepts

(e.g., types of the room or group structures of similar or functional

objects) instead of solely relying on RL rewards. Other semantic-

related auxiliary learning tasks or speci�c network architectures

are promising to explore. Last but not least, to increase the scanning

e�ciency, the autonomous scene reconstruction problem can be

extended to the multi-robot setting, where the combination of multi-

agent reinforcement learning techniques to form a decentralized

collaborative system is another fascinating direction. In this prob-

lem setting, the robot has to predict the behaviors of its partners

so as to maximize the scanning coverage of the team and minimize

redundant e�orts. E�ective learning of this kind of policy remains

unsolved and needs more in-depth research.
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